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Effect of disorder on critical short-time dynamics

Guang-Ping Zheng and Mo Li
Department of Materials Science and Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218
(Received 3 July 2001; revised manuscript received 3 October 2001; published 27 February 2002

Critical short-time dynamics in a bond-diluted Ising model is investigated in this paper using numerical
simulations. The effective static and dynamic critical exponents determined by the power-law scaling are found
to depend strongly on bond concentration and initial state. For weak disorder, the short-time scaling relations
for the system quenched from high temperature are observed to hold. In the strong dilution limit, multiscaling
relations for the system starting from the ordered state are found. Corrections to the short-time scaling are
proposed. The effect of disorder on critical short-time dynamics is discussed.
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[. INTRODUCTION systems is challenged in the on-equilibrium dynamics: The
Nonequilibrium critical dynamics has been an active re-StatiC and dynamic exponents are found to depend on the
q Y . strength of disordef4]. For example, the dynamic exponent

h - v show diff fd Ws quite different from that in the pure systems and varies
phase transitions usually show different stages of dynamig i, the strength of disorder. Because of its importance, this

evolution after being quenched from high temperature 0 thesg,e in 4 short-time off-equilibrium dynamics deserves fur-
critical temperature. Most well known is the late-time dy- ther investigation. Third, the static and dynamic exponents
namics. In this regime, the order parameter decreases arfhtained from short-time dynamic scaling for systems start-
shows power-law scaling behavi¢t]. The scaling expo- jng from two extreme initial states, i.e., completely disor-
nents are related to the static and dynamic critical exponenigered and ordered states, are found to be the same in many
of the system. However, because of the diverse relaxatiopure system$3]. Whether the short-time dynamics in disor-
times at the critical temperature, the kinetics is difficult to dered system has the same property, or whether the critical
characterize in real or infinite systems. Therefore critical exexponents are independent of the initial state is still an open
ponents may not be easily obtained from direct dynami@uestion.
scaling. Understanding of the nonequilibrium critical dynamics in
In recent years, many efforts have been made to develogisordered systems is important for the development and ap-
dynamic scaling and universality for the critical dynamics inplication of the short-time critical dynamics. Several recent
the short-time regimelt was first proven using the renormal- works begin to address some of these issues in the critical
ization group method?2] that the order parameter shows short-time dynamics in disordered systems. For example, us-
“initial slip” behavior before it evolves into the late-time ing renormalization group methofb] and Monte Carlo
regime where it starts decreasing. A new critical exporgent simulation [6,7], dynamic scaling is found to be valid in
was introduced and the dynamic power-law scaling was obshort times. However, the issue concerning the universality
tained in short time$2,3]. The static and dynamic critical of static and dynamic exponents obtained from short-time
exponents determined by this short-time dynamic scaling ardynamics was not addressed. Moreover, the effect of disorder
found to be consistent with those measured in equilibriunon critical short-time dynamics and the correction to short-
[3]. Since the measurement is carried out in short times, théme scaling have not been systematically investigated. These
off-equilibrium correlation length is still small compared to and the aforementioned problems need to be resolved before
the system size. The accurate determination of critical expothe short-time critical dynamics can be applied to studying
nents using critical dynamics is possible. Therefore, thehe phase transitions in disordered systems.
short-time dynamic scaling provides an alternative approach In this paper, an exactly solvable bond-diluted Ising
for investigation of kinetics of the nonequilibrium systems. model is employed to investigate the effect of disorder on the
Despite the initial success, many important issues pertieritical short-time dynamics. Monte Carlo simulation is used
nent to the short-time dynamic scaling still remain untouchedextensively in this paper. In the following section, we intro-
in disordered systems-irst, most of the disordered systems duce a bond-diluted Ising model and critical short-time dy-
have “glassy” phases at low temperatures. Since the relaxaamics. In Sec. lll, we analyze the critical short-time dynam-
ation time is very large in this stage, it appears that the onlycs in systems starting separately from disordered and
way to characterize the phase transition in disordered systeordered initial states. Critical exponents obtained under these
using nonequilibrium dynamics is to analyze its short-timetwo conditions are compared. In Sec. IV, we calculate the
behaviors at the transition temperature. However, whether atynamic exponent for systems with various bond concen-
not the dynamic scaling holds in short-time regime in disor-trations. Based on these results, we propose the corrections
dered systems still remains unknown. This question, thereto critical short-time dynamics. In Sec. V, we analyze the
fore, needs to be studied in depth. Second, the concept @ffects of dilution and initial states on the critical short-time
scaling and universality for phase transition in disordereddynamics.
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Il. MODEL SYSTEM AND CRITICAL SHORT-TIME 01
DYNAMICS

L=512
The McCoy-Wu model is an anisotropic Ising model that
is solvable exactlyf8,9]. The model used in this paper is a
similar two-dimensional bond-diluted model on square lat-
tice proposed by Longgl0]. Its Hamiltonian is written as / I

ﬂ:—Jo% Sj,ij,k-v-l_% IS kSj+1.k 1 T

M(t)
\

wherej labels the rows an#l labels the columns of a square ;|
lattice. J,, denotes the strength of interaction among a col- o mosots
umn of spins and is a random variable with probability dis- =002
tribution function P(J,)=(1—p)d(Jy) +ps(Ix—Jp). The
critical temperatureTl, of the bond-diluted Ising model is 1
given by the following expression:

10 100
t (MCS)
FIG. 1. Log-log plots of the total magnetization after the system

is guenched from a disordered state, is the magnetization at
=0, p=0.5.

For bond concentrationQp=<1, long-range magnetic order
exists andT is nontrivial.

According to critical short-time dynamics, after the sys-
tem is quenched from an initial state with magnetization

wherelL is the system size anlolis a size-scaled factorg
= 6z+ B/v. The Binder cumulants can be written [&3

m(t=0)=my<<1, the global magnetizatiom(t), the sus- U(t,L)=U(tb?,bL) (5b)
ceptibility y(t)<M?(t), and the autocorrelation function ' Y
C(t) should follow the power-law scaling relatioh3] where U(t)=U,(t) for system withmy=1 and U(t) be-

comesUq(t)=1—[(M*(t))1/3[{M?(t))]? for systems with

M= (<3 s )|~ (3@ Mo-0:
Ni=1 ' To verify the critical short-time dynamic scaling, we use
heat-bath Monte Carlo simulation technique. An attempt of
(/{1 N 2 update of all spins is defined to be one Monte Carlo step
M2(t)= < N > 32) >l~t[d_25/”]/z. (B (MCS). It was found[11] that the heat-bath spin update al-
L 2'=1 gorithm could reduce the microscopic tirg (typically ~5

MCS) within which Egs.(3) and(4) may not be valid. The
and . o
periodic boundary conditions are used.
~tmzro, (30 Ill. POWER-LAW SCALING FOR SHORT-TIME
DYNAMICS IN SYSTEM WITH p=0.5

T
C(t)= <N§13“)3<°)>

Here (---) denotes the average over spin configuration at  whenp=1.0, the system governed by Ed) is a pure

=0 (mg is fixed). [---] denotes the average over random-|sing model and the critical dynamics has been extensively
bond configurations for fixeg. d=2 is the spatial dimen-
sion. If the initial state is completely orderechf=1), the

magnetization and the Binder cumuldhi(t) should follow ' o M@
the power laws in time, — ° o

M(t)"'t_ﬁlvz (4a) 103 F

and

M2 (1)
c(t)

_(MA()]
CIONG

Equations(3) and(4) are valid in short times when the sys-

tem sizeL is large. ‘
In general, the critical short-time dynamic scaling for the 10 102

kth moment of magnetization in a finite system can be writ- t (MCS)

ten as

U,(t) 1~t92, (4b)

i 10-2

FIG. 2. Log-log plots ofM?(t) andC(t). L=512,p=0.5, and
M®(t,my;L)=b *¥"M®(b~% bomy;b L), (58  my=0.
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FIG. 3. Finite-size scaling for the Binder cumuldsg(t). The

lines are original data and the symbols are the rescaled (dta.

time is rescaled by a factor of*2

investigated 3]. Whenp tends to 0, power-law scalir/dEgs.
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FIG. 4. Log-log plots of the magnetizatidvi(t) and the Binder
cumulantU,(t). L=512,p=0.5, andmy=1.

determination of dynamic exponenby rescaling the Binder
cumulantUy(t). In Table I, the exponent8, B/v, andz de-
termined by power-law scaling and finite-size scaling rela-

(3)—(5)] for short-time dynamics needs to be checked. Theretions are listed.

fore, we first consider a system with a median dilutiorpat
=0.5. The critical temperature can be determined by(Ex.

asJo/kgT.=0.609 378.

We investigated several systems with different sides

The evolution of magnetizatioM (t) and Binder cumu-
lant U,(t) after the system is released from an ordered state
(mg=1) are shown in Fig. 4. In the time regin&-500
MCS) consideredM(t) and U,(t) cannot be fitted well to

=128, 256, 512, and 1024We find asL =256, there is no power-law relations. If we take the microscopic time to be
finite-size effect on the physical quantities measured. In thd50 MCS, M(t) and U,(t) can be fitted to Eqs(4a and

system withL =512, the bond-configuration average and the(4b), respectively, with acceptable errors. The exponents
initial spin-configuration average for each physical quantity2/v andz are also determined by finite-size scaling for the

are 5000 and 1000, respectively.

second momeni (?)(t). Table | lists the results.

For each of the systems, we prepared two initial states. In Table | we comparal/z and 8/zv obtained from the
One is the ordered state witlmy=1; and another is the short-time dynamics of the systems that start from the initial
well-prepared disordered state witly=0. The dynamics are states withmg=1 and my=0. The data listed in Table |
studied for each system following the subsequent evolutioindicate that the exponents determined from these two states

from each of the initial states.

are significantly different if the scaling relatiof&gs. (3)—

Figure 1 shows the short-time increase of magnetizatiori5)] are used. In particular, much large difference is observed
after the system is quenched from the disordered state. THer the exponenp/v.

data can be well fitted to Eq(3a). The exponent isf
=0.176(3) ifm, is extrapolated to zerdv ?(t) andC(t) of

To summarize, we find that in a bond-diluted Ising model
with p=0.5, the short-time power-law dynamic scaling is

the system, which started from a completely disordered statexact if the initial state is completely disordereaiy=0).
(mp=0), are shown in Fig. 2. They are all fitted well to The exponents determined by power-law scaling and finite-

power-law relations. The exponents in E¢3h) and(3c) are

d/z—2B/zv=0.647(9) andl/z— 6=0.5540), respectively.

size scaling relations are consistent with each other. How-
ever, when the initial state is ordereth{=1), the micro-

Finite-size scaling relationgEgs. (5)] are also tested. The scopic timet,, is found to be as large as 150 MCS. Most
exponents B/v andz can be measured. Figure 3 shows thestriking is the result where the static and dynamic exponents

TABLE I. The scaling exponents obtained from E¢3—(5) for a bond-diluted Ising model with bond

concentratiorp=0.5.

m(): 1 mo: 0
d/z Blzv 0 d/z Blzv
Power-law 0.617+0.005 0.054:0.002 0.17@2) 0.731) 0.0420)
scaling
Finite-size 0.718) 0.040) 0.785) 0.04(5)
scaling
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FIG. 6. Log-log plots of the Binder cumulantd,(t) in the
systems with different bond concentratignsmy,=1, L=512. The
dashed line idJ4(t) for a pure Ising model.

FIG. 5. Log-log plots of the magnetizatidvi(t) in the systems
with different bond concentrations my=1, L=512. The dashed
line is M(t) for a pure Ising model.

The effective exponentd/z and B/zv as functions ofp
obtained from short-time dynamics with different initial gre plotted in Fig. @). It shows thatB/zv is independent of
states are not consistent with each other. This discrepangy and d/z can be fitted to a linear function qf under the
will be considered below and the corrections to the scaling ohssumption that the power-law scaling relatid&s)s. (4)]
the short-time dynamic in the system starting from orderechold in early short-time regime.

state will be addressed. The exponent®/v andz can also be measured by finite-
size scaling relationfEgs. (5)] in the system starting from
IV. EEEECT OF DISORDER ON THE CRITICAL completely disordered state. Table Il listaand g/v for dif-
SHORT-TIME DYNAMICS ferent systems. Figure(ld) shows the dynamic exponents
determined from systems starting from disordered and or-
A. Effect of disorder on critical exponents dered states, respectively.

We now investigate the critical short-time dynamics in the . . B .
systems with different bond concentrations tAt0, the sys- B. Correction to short-time critical scaling

tems are completely ordereang=1). Figure 5 shows the  From the Monte Carlo studies, we observed the difference
effect of p on the evolution of magnetizatiod (t) in early  in short-time critical scaling in a bond-diluted Ising model.
short-time regimgt<<1000 MCS. Whenp decreases\ (t) As mentioned earlier, when the system is quenched from
deviates significantly from the power-law scaling relation high-temperature disordered state, the short-time scaling is
[Eq. (4a)]. If we define A(t)=d[InM(t)J/d[In(t)], and the exact and the critical exponents do not change with bond
microscopic timet,, is assumed to be the crossover time concentrations significantly. But for the system starting from
whenA(t) becomes a constant. Thé(t) can be fitted to the ordered state, the power-law scaling relations are com-
Eq. (43 in time regimet=t,,, and the effective exponent is pletely broken down in short times. This discrepancy is very
measured. Table Il lists,, and corresponding effective expo- interesting and also important for critical short-time dynam-
nentB/zv for the systems with various bond concentrationsics. As the marginal irrelevance of disorder is expected in
p. The Binder cumulantdJ,(t) are shown in Fig. 6. The disordered system with little dilutiofl3,14], we can make
effective exponentl/z can be determined by fitting the data necessary corrections to the short-time dynamic scaling for
in macroscopic time regime £t,,) to Eq.(4b). Table Il lists  pure systems$Eqgs. (3)—(5)] and solve the problem in the
all the results. bond-diluted Ising model.

TABLE II. The exponents obtained from short-time scaling. The effective exponkntand 8/zv are
determined by power-law scaling for systems with=1 (L=512). The exponert and g/v are determined
by finite-size scaling for a pair of latticds=32 andL =64, my=0.

p 0.1 0.2 0.35 0.5 0.8 1.0
tm (MCS) 5000 507 98 51 32 2
d/z 0.3963) 0.5028) 0.6149) 0.796) 0.925)
Blzv 0.059) 0.054) 0.0546) 0.0539) 0.0546) 0.0568)
z 2.48 2.54 2.52 2.58 2.36 2.6
Blv 0.115 0.115 0.124 0.115 0.120 0.125
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FIG. 8. Log-log plots of the magnetizatiggymbols in the time
regime[100, 10 00Q in systems with different bond concentrations
5 p. mg=1, L=512. The solid lines are the fits of E().
. —
(24
ii g temperature can be proposed[89)]
3 4 =~
w £ ,
£ 1102 E(t)~t"I[1+ Coln(t)]*7, (6)
[
=
8 3 wherez’ (p) is a new exponent and is a functionpfWhen
p=1, 1/z’'(p)=0 for a pure Ising model. According to Eq.
oL (6), Egs.(3)—(5) can be modified. The correction to E4a)
can be written as

M(t)~t= 241+ A(p)In(t)]BP, (7)

FIG. 7. (8) The exponents/z and /v at different bond concen- WhereA(p) andB(p) are functions that depend only on the
trationsp. my=1 andL =512. The solid line is a linear fito) The ~ bond concentration. Assume thel{( p) =z is independent of
dynamical exponents and crossover titpeat various bond concen- P Whenp tends to zero, then E@5b) can be changed to
trationsp. z; is the dynamical exponent obtained from dynamical

scaling forU,(t) and z, is the dynamical exponent obtained by U(t,L)=U(tb%[1+A(p)Int],bL). (8)
finite-size scaling folUy(t). The right axis is in logarithm scale.
Lines are guides to the eye. If A(p) is small, Eqs(7) and(8) are consistent with power-

law scaling relations in the early short-time regime, itg,,
Corrections to short-time critical scaling have been stud-<<t<<1000 MCS.
ied in some disordered systems and systems with metastable Corrections toM (t) in systems starting froomy=1 are
stated15—-18. Here we look at the general correction to the shown in Fig. 8(8/zv is fixed at 0.057Q Table Ill lists the
critical dynamics in the bond-dilute McCoy-Wu model. correspondingA(p) andB(p). Binder cumulants in systems
Figure 8 shows the evolution of magnetization up tostarting frommgy=0 are rescaled by E@8). Figure 9 shows
10000 MCS after a completely ordered system is placed ahe finite-size scaling folJy(t) in systems withp=0.35.
the critical temperature. The deviation from power law isTwo pairs of lattices, I(;,L,)=(16,32) and I,L,)
obvious wherp tends to zero. We now consider the leading=(32,64), are used to determine the exponentable I
scaling correction for systems with various bond concentralists all the results.
tions. From the critical singularity of specific heat in  From the data in Table Il and Figs. 8 and 9, we can
McCoy-Wu model, the correlation leng#{(t) at the critical devise proper corrections to scaling for short-time critical

TABLE lII. The coefficientsA(p) andB(p) of fits in Eq.(7). zis the dynamical exponent determined by
Eq. (8) for system withmy=0.

p 0.2 0.35 0.5 0.8
A(p) 0.120 0.062 0.098 0.10
B(p) 0.032 0.030 0.031 0.026

z 2.20 2.18 2.19 2.14
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scopic timet,,. It seems that,, does not depend strongly on
the bond concentratiop. In the weak dilution limit, the
power-law scaling relationgEgs. (3)] may still be valid in
short times. In the strong dilution limitp(—0), we found

that the short-time dynamic scaling relations for the system
o starting from ordered statesng=1) are completely broken
04 | | down. There exist three stages of dynamic evolution in the

’ system starting from the ordered state. In time period of

et 100-1000 MCS, the power-law decay Mif(t) is observed,
5o which is similar to that in a pure Ising system. Ega) is
02| / 5~ 1 irrelevant to the disorder and the effective expongfv is
, o independent of bond concentration. For strong bond dilution
and in relatively longer timest1000 MCS), the effect of
disorder on dynamics needs to be taken into account. The
corrections to dynamic scaling result in consistent exponents,
i.e., exponents are independent of disorder and initial states
and the exponents are comparable with those of pure Ising
model. In the microscopic time regime, the dynamic behav-
ior of M(t) is unigue. We suspect that the initial microscopic
kinetics and disorder in the system may be the cause for the
behaviors in this regime. More detailed investigation is un-
dynamics. The corrections to the scaling can be fitted vergerway in a very strong dilution limit, for example, at
well to the Monte Carlo simulation results. The critical ex- p=0.01.
ponents determined from systems witlhy=1 and my=0 Why there exists the discrepancy between the short-time
from this fitting are consistent with each other. It should bedynamics in systems witiny=0 andmy=1 could be attrib-
mentioned that several other corrections to short-time dyuted to the fo”owing reasons. In pure |Sing Systems’ the

namics in the diluted Ising models are proposed recentlyshort-range order can be achieved for both systems evolved
including the logarithm correctiofl5] and inverse power-  from ordered and disordered states. But in bond-diluted Ising
law correction[16]. We have tested these correction forms.systems, because of the disorder, the correlation in the sys-
However, we find that they do not fit well the short-time tem starting from an ordered state is destroyed in short times.
dynamics in the bond-diluted Ising model. Therefore the initial state significantly affects the critical ex-
ponents determined by short-time dynamics in the disordered
system.

In summary, we studied the critical short-time dynamics

The results from the early works show that in disorderedys the hond-diluted Ising models using Monte Carlo simula-

systems, the critical exponents depend on the strength Qfons \we found that when the dilution is large, the effective

disorder[12]. In the bond-diluted Ising model governed by giatic and dynamic exponents determined from power-law
Eq. (1), itis found by the equilibrium critical scaling that the gcaling in early short-time regime in systems starting from
exponents and B/v increase with decreasing bond concen-yisordered and ordered initial states are apparently different.

trationp, andz— asp tends to zero. The effective expo- General corrections to short-time dynamics are proposed and
nentsz and B/v obtained from power-law scaling in early 5.6 found to fit the simulation results well.

short-time regime support these results quantitatively. How-
ever the effective static and dynamic exponents obtained by
power-law short-time scaling for systems starting from or-
dered my=1) and disorderednf,=0) states are not con- We gratefully acknowledge the support of this work pro-
sistent with each other. vided by the U.S. Department of Energ§Grant No.

For the system starting from a completely disordered stat®EFG02-99ER45784and the Whiting School of Engineer-
(mp=0), the strength of disorder only affects the micro-ing at The Johns Hopkins Universiti.L.).

Up(®)
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FIG. 9. Finite-size scaling for the Binder cumuldng(t). The
lines are original data and the symbols are the rescaled (¥dte.
time is rescaled ag[1+A(p)Int]L%) p=0.35 andm,=0.

V. DISCUSSION AND CONCLUSION
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